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Abstract

Using an anchor-item design of test equating, the effects of three
equating methods (Tucker linear and two 3PL-IRT-based methods) and the content
representativeness of anchor items on the accuracy of equating were examined
in this study. The main goals were to investigate (a) whether equating
accuracy improved with more content-representative anchor items, (b) whether
the effect of the content representativeness of anchor items depended on the
particular equating method used, and (c) relatively, which equating method
yielded the most accurate results. An innovative way of evaluating equating
accuracy appropriate for the particular item-sampling design of this study was
introduced. The adequacy of using the 3PL IRT model for equating alternate
forms of a minimum competency test was also discussed.

The data analyzed were test results from two forms of a professional
competency examination that had 197 and 203 items respectively. There were
145 anchor items embedded in both forms, and the two examinee groups were not
randomly formed. After pooling the two test forms, four pairs of shorter test
forms were created by sampling items from the item pool using four distinct
item sampling schemes. These item sampling schemes resulted in tests that
differed in the content representativeness of their anchor items, and the
effect of anchor length was controlled. For each shorter test, the pair of
alternate forms were equated using both the conventional linear method and the
IRT-based methods.

The total raw score on the 145 anchor items in the original test was
regarded as a "pseudo true score", which was used as a criterion for
evaluating equating accuracy. Estimated IRT true scores based on the two IRT-
based equating and Tucker linear equating result were correlated to "pseudo
true score" separately to study the accuracy of these equating. The Pearson
produce moment correlation coefficient (r) was used to represent the estimated
accuracy of equating results.

In summary, this study found that (a) overall, the three equating
methods appeared to yield moderately accurate equating results on every test;
(b) however, the equating outcomes of the IRT-based methods seemed to be more
accurate than the outcomes of Tucker method, regardless of the content
representativeness of anchor items; (c) the two IRT-based methods yielded very
similar equating results; (d) the accuracy of equating depended on the content
representativeness of anchor items, no matter which method was used to equate
test forms; and (e) the 3PL IRT model seemed appropriate for equating the
minimum competency test that had negative skewed score distribution.

One important implication of these findings was, regardless of equating
method, equating results were more likely to be accurate when anchor items
were more representative of the total test, or the content coverage of a test
concentrated on fewer topics. Suggestions for future research were provided
in this paper.
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The Effects of Content Mix and Equating Method on the Accuracy of
Test Equating Using Anchor-Item Design

Introduction
In testing practice, often not all examinees take a test at the same

occasion or take the same test. To ensure test security, there is a need for
alternate test forms. Test forms that have comparable scores are also needed
for measuring growth or trends of learning. The need for interchangeable
parallel test forms is especially urgent for licensure exams and any other
tests used to inform critical decisions. In addition to careful test
construction, a practical strategy to arrive at comparable test scores is to
establish equivalency between different forms via equating.

A variety of equating techniques have been developed, including linear
and non-linear equating. Mainly, equating models vary substantially in their
assumptions, mathematical functions, as well as procedures required.
Conventional linear methods, such as Tucker linear equating, are
straightforward and convenient but their results do not always meet all
criteria for equivalent tests. To overcome the drawbacks of conventional
equating, equating methods based on IRT estimated scores are developed and
used increasingly.

IRT equating is especially useful in common-item design, where random
assignment of examinees is not feasible and the assumptions required by
conventional equating are likely to be violated (Cook & Eignor, 1991; Crocker
& Algina, 1986). Research results have shown that IRT methods are more robust
than conventional equating and will lead to greater stability, when tests to
be equated differ somewhat in content and length (Petersen, Cook, & Stocking,
1983). Despite various appeals in theory and practice, IRT equating remains
under scrutiny because of its sometimes inconsistent behaviors. Possible IRT
method by test interaction also raises concerns (Hills, Subhiyah, & Hirsch,
1988; Peterson, Cook, & Stocking, 1983). In addition, practical significance
or value of improved accuracy achieved by IRT equating over conventional
methods needs to be considered.

To enhance equating accuracy, this study seeks to settle controversies
about various equating in practice. Pairs of test forms were assembled by
various item sampling schemes to manipulate content mix of a test, or content
representation of anchor items embedded in the test. The test forms were then
equated by Tucker linear method and two IRT-based equating methods, using
anchor-item design. Various equating results were evaluated against an
innovative criterion of equating accuracy, which is appropriate for the
particular design of this study. Comparisons of equating results are
presented and discussed, and suggestions are made for future research and
equating practice.

Research Purposes
In search of a better understanding in the function of anchor

characteristics in equating and the relative effectiveness of equating
methods, this study bears specific purposes as follows:

1. To investigate the effect of content representativeness of anchor
items on equating accuracy, while the method of equating varies.

2. To estimate, evaluate, and compare the accuracy of linear equating
and IRT-based equating.

3. To compare the equating results of two IRT equating methods (two-
stage method and fixed-b method) that are based on different procedures.

4. To apply an innovative criterion for evaluating equating accuracy
that is appropriate for the particular design of this study so the
effectiveness of various methods can be evaluated.

5. To inform testing practice, based on the findings of this study,
about ways to improving equating when anchor-item design is used.
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Pursuing solutions to the issues listed above, this study is expected to
make contributions to the improvement of test equating practice.

Research Questions
The research questions of this study are shaped by personal interest in

understanding and evaluating the effectiveness of various equating methods.
They also reflect important equating issues in practice, and they are made
viable by the rich context of the data analyzed in this study. To achieve the
study goals described previously, the following specific research questions
are raised:

1. Does equating result depend on the content representation of anchor
items? Specifically, when the content mix of anchor items becomes more
representative to the entire test, does the accuracy of equating improve?

2. To what extent do the results of Tucker linear equating and the IRT
methods agree, or vary?

3. To what extent do the results of IRT two-stage and IRT fixed-b
equating procedures agree, or vary?

4. How accurate are the equating results yielded by various equating
methods, compared against an appropriate criterion for evaluating equating
accuracy?

5. Is three-parameter logistic (3PL) IRT model appropriate for the
minimum competence test, which has a negatively skewed score distribution,
analyzed in this study?

Literature Review
Important equating issues, such as conditions of equating, procedures

and assumptions of common equating methods, as well as findings from previous
research about the merits of various equating methods are reviewed in this
section.

Conditions of Equivalency
If test Y is to be equated to test X, no matter what equating procedure

is chosen, the following conditions must be satisfied to conclude that the
scores on test X and test Y are equivalent (Angoff, 1984; Dorans, 1990; Lord,
1980; Petersen, Kolen, & Hoover, 1989):

1. Both tests measure the same construct.
2. The equating achieves equity. That is, for individuals of

identical proficiency, the conditional frequency distributions of scores on
the two tests are the same.

3. The equating transformation is symmetric. That is, the equating of Y
to X is the inverse of the equating of X to Y.

4. The equating transformation is invariant across sub-groups of the
population, from which it is derived.

Equating Guidelines
There is no absolute superior criteria to guide the selection of

equating design or method. Arbitrary judgments and decisions that draw on
equating expertise and experience are always needed. Factors such as
feasibility, cost, and any unique testing context should all be considered.

Brennan and Kolen (1987) argued that the test content and statistical
specifications for tests being equated ought to be defined precisely and be
stable over time. In the process of test construction, item statistics should
be obtained from pre-testing or a previous use of the test. Each test should
be reasonably long, with at least 35 items, and the scoring keys should be
consistent. The stems for common items, alternatives, and stimulus materials
should be identical for the forms to be equated. The characteristics of
examinee groups should be stable over time, too. The sizes of the groups
should be relatively large, larger than roughly 400. The curriculum, training
materials, and field of study should also be stable. The test items should be
administered and secured under standardized conditions.

Criteria for Selecting Equating Methods
Usually equating method is selected or tailored to accommodate the need

5
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of a particular testing situation. The three major aspects to be considered
for the selection of equating method are reflected in these questions: (1) Are
the underlying assumptions required tenable? (2) Is the procedure practical?
and (3) How good is the equating result? (Crocker & Algina, 1986)
Tenability of Model Assumptions

The premise of model application is that all the underlying assumptions
of the selected model hold. Linear equating assumes that the score
distributions of the tests being equated have identical shapes, and is
appropriate for equating use when score distributions only differ in the means
and/or standard deviations. Equipercentile equating requires fewer
assumptions than linear equating. However, in theory, it associates with
larger errors than linear equating does (Lord, 1982a). Both linear and
equipercentile equating assume that the tests being equated measure the same
trait and have equal reliability.

Given tests that have different average difficulty, linear and
equipercentile equating are likely to yield erroneous results. The results of
these methods also fail to meet the condition of equity and population
invariance (Hambleton & Swaminathan, 1990). Unlike these methods, IRT
equating does not have the same drawbacks and could be a better alternative.
Applicability of Design and Method

Random groups design, single group design with counter-balancing, and
common-item nonequivalent groups design are three common designs used to
collect data before equating (Kolen & Brennan, 1995). Random examinee groups
design is desirable because each examinee only has to take one form and
several forms can be equated at the same time. Nevertheless, it requires the
test forms to be available and administered at the same time, which is
sometimes not practical. One solution to this problem is the use of anchor
design. Either test forms with embedded anchor items (the internal anchor)
can be given to different examinee groups, or a third test (the external
anchor) can be given to both examinee groups that take different test forms.

Without random assignment, the score distributions of anchor items for
different sub-populations may be markedly different and the assumption of
equity is unlikely to hold (Crocker & Algina, 1986). In such case, linear or
equipercentile method is likely to yield inaccurate results, whereas IRT-based
methods seem to have more accurate results.
Eauatina Accuracy

A major concern for test equating is to what extent the equated scores
are equivalent. Random equating errors result from the sampling of examinees
and can be controlled by using large examinee samples and choosing appropriate
equating designs. Systematic equating errors, whereas, are caused by
violations of assumptions and conditions of equating methods. Sometimes,
systematic errors can be so large that the results of equating may be worse
than no equating (Kolen & Brennan, 1995). To reduce systematic errors, the
conditions of equating and assumptions made in equating should be carefully
examined.

Perfect equivalency can never be achieved because true score can only be
estimated. Consequently, there is no absolute criterion for evaluating
equating accuracy. In practice, equating results are often compared against
some arbitrary sound criteria to study equating accuracy. Therefore, equating
accuracy is an estimate depending on the nature of the arbitrary criterion
used. It may be unreasonable to compare all kinds of equating results against
one single criterion, because equating methods vary in their assumptions and
estimation procedures.

Typically, conventional equating methods that have been known to be
satisfactory in yielding accurate results, or have been used in practice for
quite a time, are used as evaluation criteria for equating accuracy. Skaggs
and Lissitz (1986) argued that the best situation for research purposes was to
equate a test to itself through intervening forms.

Tucker Linear Eauatina
Linear equating has the appeal of simplicity in terms of score

transformation and is used most often with the anchor-item design (Kolen &
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Brennan, 1987). Among the many linear methods, Tucker linear equating is one
of the methods employed most frequently.
Synthetic Population

For anchor-item design, Tucker's method involves the use of a synthetic
population (Braun & Holland, 1982). A synthetic population is usually defined
as a combination of the proportionally weighted (proportional to sample sizes)
populations of examinees taking different test forms. Typically, an equating
function is viewed as being defined for a single population, therefore, the
two examinee populations must be combined as one single population for
defining an equating relationship (Kolen & Brennan,1987).
Model Assumptions

In an anchor-item equating design, suppose. Population 1 take Form X ,

Population 2 take Form Y, and V is the embedded set of anchor items in both
forms; to equate scores on Form X to the scale of Form Y, Tucker linear
equating requires some strong statistical assumptions as follows (Kolen &
Brennan, 1987; Kolen & Brennan, 1995):

1. The linear regression function (slope and intercept) for the
regression of X on V is the same for Populations 1 and 2. The function for
the regression of Y on V is also the same for the two populations.

2. The variance of X given V is the same for the two populations, and
the variance of Y given V is also the same for the two populations.

Under the above assumptions, the linearly transformed scores on one
form, yielded by Tucker's method, will have the same mean and standard
deviation as the scores on another form. Because of the assumptions about the
variances and regression functions in relation to the two populations, Tucker
linear equating is more accurate when examinee groups are similar.
Eauatina Procedures

Using the proportional weights to form a synthetic population, Tucker
linear equating basically involves the following concepts and procedures
(Kolen & Brennan, 1987; Kolen & Brennan, 1995):

1. Find the weights for Populations 1 and 2 by using these formula:
wi=n1/(n1 +n2) and w2=n2/(n1 +n2), where n1 and n2 are the sample sizes of examinees
from populations 1 and 2 respectively.

2. Let a1 and a2 be the regression slopes for the populations, then for
Population 1,

al (X IV) =al (X, V) oq (V) and al (Y IV) =6, (Y, V) /a; (V)

and for population 2,

a2(X IV)=02(X,V)/o-i (V) and a2 (Y Iv) =02 (Y,V) / 0-3 (V) .

In addition, let p, and p, be the regression intercepts for the two
populations, and gi and µ2 be the population means, then

and
(31(X Iv) =iii(X) k1)µ, (V) and I32(Y =1.12(Y) -al(Y I1)1.12(V) ,

I32(X IV) =11.2(X)-cc2(X IV)11.2(V) and 132(Y IV) =112(X) -a2(Y IV)R2(V) .

To compute the a1 (X .T) and ec2 (Y IV) , observed data can be plugged in to the
above equations.

3. By assumptions about the slopes and intercepts for the two
populations, a, (X IV) =a2 ( X , a1 (Y IV) = a2 (Y IV) , 132(X IV) =132 (X IV) , and p, (Y IV) =
132 (Y IV) . And, by assumptions about the same variances for the two
populations,

cr; Go [1-- pi2 (x,v)]=0-3 (X) [1 -p2 (x,v)] ,

7
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a; (Y) [1-p; (Y,V)]=ai (Y) [1- (Y,V) ]

4. With the above assumptions, it can be demonstrated that

11, (Y) =µ2 (Y) +C(2(Y IV) [111 (v) (v) , 1.12(x)=111(x)-al(x Iv) [p.,(v) -112(v) ,

a; (Y) = 0-3 (Y) +0(3 (Y IV) [ o (V) (v) ] , ai (x)=o-; (x)-al (X Iv) [a; (V) -ai (v) ] ,

61(Y,V)= a2(Y,V) aj (V) / (V)], a2 (x,v) =al (x, v) [ (V) /6j (V)].

5. The parameters for the synthetic population can be expressed by the
weights and the parameters of Populations 1 and 2. The equations for the
population means are (a) II. (X) =will (X) +w2p.2 (X) , (b) µa (Y) =wig, (Y) +w2µ2 (Y) , and (c)
11.(V)=w,i.ti(V)+w2ji,(V) . And, the population variances are

and

ai(X)=w201(X)+w20(X) +w1w2011(x)-112(x) ] 2,

(Y) =wi a? (Y) +w201 (Y) +wiw2011(Y) -112(Y) ]2,

ai (v)=Iajoi (V) +w2ai (V) +w2w2 [Ili (V) (V) 2,

where s denotes the synthetic population.
6. Substitute the equations in step 4 in the equations in step 5, the

means and variances for the synthetic population on Form X and Form Y can be
derived as follows:

and

11.(x)=1.11(x) -W2a1 (X KT) [Ili (V) -112 (V)

1. (Y) =112(Y) +wia2 ( Y IV) [II, (V) -112(V) ,

a (X) =6j (x)-w2o-; (x iv) [ a; (V) (v) +wiw2a; (x iv) [R,(v) -112 (V) l2r

(Y) = cr3 (Y) -1-w, 0-3 (Y IV) [a; On- (v)]+wy2ai (Y IV) 011(V) -112(V) ]2.

To obtain estimates for the means and variances for the synthetic population,
plug in observed data to the above equations.

7. After taking the square roots of a:(X) and eq(y), the equation for

Tucker-linear transformation, P(x)=a,(Y)/0,(X)[xlis ( X ) ] ( Y) , is obtained by
replacing the parameters in the above equation with the estimated values
obtained previously.
Some Practical concerns

Despite the fact that equal reliability is needed for Tucker linear
equating, Kolen and Brennan (1987) argued that, if the test forms were
designed to be as similar as possible in content and statistical
characteristics, and have the same length, small differences in reliability
were not likely to have negative influences on the equating of the two forms.

Compared to Levine equally reliable method, another frequently used
linear method that requires the assumption of perfectly correlated (r=1.0)
true scores on the two forms, Tucker linear method is often considered more
appropriate when examine groups are more similar and test forms less similar.
Levine method, whereas, is often said to be more appropriate when test forms
are more similar and examinee groups less similar. Nevertheless, research
findings have not yet provided clear evidence for the argument (Kolen &
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Brennan, 1987).
IRT Eauatina Methods

Classical methods of equating, developed for equating observed raw
scores, are criticized for not being able to meet the conditions of equating
(equity, symmetry, and invariance). Equating based on item response theory,
whereas, does not suffer from the same drawbacks, given the IRT model fits the
data (Hambleton and Swaminathan, 1990; Kolen, 1981). The result of IRT
equating, however, varies with the particular equating technique or procedure
used. This section provides an overview for IRT equating using anchor-item
design.
Linear Transformation of IRT Scales (Two -stage Method)

IRT parameter estimates, obtained from alternate forms of a test, can be
converted to the same scale via linear transformation (Kolen and Brennan,
1995). Assuming item and person invariance, linear transformation is
reasonable for the non-equivalent-group anchor-item design because the
difficulty and discrimination parameters for the common items from the
alternate forms are linearly related (Petersen, Cook, & Stocking, 1983; Hills,
Subhiyah, & Hirsch, 1988).

In theory, given 3PL IRT model fits the data, transformation equations
relating IRT parameters for alternate forms of a test (say, Form X and Form Y)
are defined as follows (Hambleton and Swaminathan, 1990; Kolen & Brennan,
1995):

(1) For person i, the equation for the ability parameter is eyi=A0x+B,

where A and B are constants and eyi and Oxi are the values of person i's

ability on the scales of Forms Y and X.

(2) Let ay , ,y , and cy be the item parameters for item j on Form Y

scale, and , , and , be the parameters on Form X scale, (a) thexj Ux'

equation for item discrimination parameter is a y =ax, IA, (b) the equation for

item difficulty parameter is b =Ab +B, and (c) the equation for lower
Yj x

asymptote (guessing) parameter is cyj=Cxj
-

For a group of persons or items, Kolen & Brennan (1995) showed that the
transformation constants (A and B) can be expressed as follows:

A=6(by)/0(10=11(ax)/Way)=G(0y)10(0x),

B=1.1( by )-A11( bx)=11( Oy ) -Apt( Ox )

In the above equations, the means µ(a,), Way), µ(b.), and ii(by), as

well as the standard deviations 6(6.,) and 0(by), are defined over items.

And, the means g(Ox) and Wey), as well as the standard deviations a(Ox) and

a(ey), are defined over persons.

In practice, IRT parameters are unknown and thus need to be estimated.
In anchor-item equating design, parameter estimates for anchor items can be
obtained and used to replace the parameters in the above equations to find the
scaling constants. Basically, linear transformation of IRT scales involves
two stages: (a) first, alternate test forms are calibrated separately, (b) the
information on anchor items obtained from the two IRT calibrations are then
used to derive transformation equations for person and item parameters, which
can be used to arrive at equivalent scaled scores for examinees taking
different test forms.

Other than the above scale-transformation procedure, various techniques

and
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for transforming IRT scales have been proposed. Regression techniques can be
applied, but the established relationship is not symmetric (Hambleton and
Swaminathan, 1990). The mean/sigma method (Marco, 1977), the mean/mean method
(Loyd & Hoover, 1980), and the method involving the use of the geometric means
of the a-parameters (Mislevy & Bock, 1990) are all straightforward and similar
to the procedure described above. Taking into account individual standard
error of estimate, the robust mean and sigma method (Linn, Levine, Hastings
and Wardrop, 1981) and robust iterative weighted mean and sigma method
(Stocking & Lord, 1983) use variance-weighted means and standard deviations to
find the transformation constants. In short, poorly estimated parameters with
larger variances receive less weights. The iterative method also weights
outliers less.

The above methods, however, suffer from a common flaw; that is, they do
not take into account all of the item parameters at the same time. As a
result, various combinations of a-, b-, and c-parameter estimates may result
in very similar item characteristic curves over the range of the most
occurring ability.
Characteristic Curve Transformation (Formula) Methods

Unlike the above methods, characteristic curve methods developed by
Haebara (1980) and Stocking and Lord (1983) consider the parameter estimates
simultaneously. The two methods estimate the difference between the item
characteristic curves on the two scales, for a given 9 and over items,
differently. However, both methods rely on iterative algorithms that minimize
the overall differences over examinees to find the transformation constants (A
and B).

It is found from some comparison study that the characteristic curve
transformation methods yielded more accurate results than the other methods.
Nevertheless, the results did not differ much sometimes (Baker & Al-Karni,
1991). In addition to the computationally intensive iteration procedures, the
characteristic curve methods also have the limitation of not explicitly
accounting for the error in estimating item parameters (Kolen & Brennan,
1995).
Fixed-b Method

The fixed-b IRT equating method sequentially calibrates test items
following these steps:

(1) Estimate bs and other item parameters for Book-A items;
(2) Calibrate Book-B items by fixing bs for the anchor items at the values

obtained from the previous step;
(3) Book-B scale is then fixed onto the scale of Book A (Petersen, Cook, &

Stocking, 1983; Hills, Subhiyah, & Hirsch, 1988).
IRT True-Score Eauatinq

In theory, true scores on alternate tests or test forms can be obtained
and equated. To eliminated negative scores and to provide a readily
interpretable scale, values on 0 (ability) scale may be transformed to their
corresponding true score values (Hambleton, Swaminathan, and Rogers, 1991).
Then, the true scores on alternate forms can be equated via some linear
transformation.

IRT true Scores.
Let 0 be the parameter of ability and n be the number of items in a

test, true score can be defined as follows: True score ()=

and Algina, 1986; Lord, 1980; Hambleton & Swaminathan, 1990).
tests or test forms of different lengths, instead of

110) (Crocker

When comparing
true proportion

correct or dpmain score (n) can be reported. Ranging between 0 and 1, it is

computed by dividing 4 by the number of items (n) in test forms-- n=4/n
(Hambleton & Swaminathan, 1990; Hambleton, Swaminathan, and Rogers, 1991).

Taking into account the numbers of alternative options, which has
substantial influence on guessing, the true score formula can be rewritten to
(Petersen, Cook, & Stocking, 1983):
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True score (4)=i1[(k-1)/kilxpi(0)-1/k1},

where n is the number of test items, and ki+1 is the number of alternative
answers of item i .

Eguating true scores.
Suppose the ability level of an examinee on test for X is 0,, and 4. is

the corresponding true score, and the ability level of the same examinee on
alternate form Y is 0, and 4, is the corresponding true score; then the
equating equations for true scores are

4x=:EP0x) and 3,=1,pi(0y)E:I,Pj(a0x+P),
i=1 i=1 p.1

where (1) n is the number of items on test X and m is the number of items on
Y, (2) pi(ex) is the probability of a correct answer to item i by an examinee,

whose ability level on test X is ex, (3) pi(0y)is the probability of a correct

answer to item j by an examinee, whose ability level on test Y is 0y, and (4)

8y=m0x+P expresses the linear relationship between 0, and 0, (Hambleton &

Swaminathan, 1990). In theory, for a given value 0x, the pair of true scores

(4x,4y) on tests X and Y can be determined. In practice, however, true

scores can only be estimated.

Advantages of IRT Eauatina
Traditional equating methods can yield good results if the test forms

are sufficiently parallel (Lord, 1980). However, when the tests to be equated
differ in difficulties, IRT methods are considered to be better than linear
methods. Major advantages of IRT equating include: (a) its flexibility in
modeling either linear or curvilinear relationship between raw scores on
alternate test forms, (b) equal reliability or identical observed score
distributions is not assumed (Cook & Eignor, 1983; Kolen, 1981), (c) "item-
free" estimates for persons and "person-free" item characteristics (Lord,
1977) are attainable, (d) unlike traditional equating methods, which only
yield one single standard error of measurement for all examinees, error of
measurement for ability estimation at each ability level can be estimated by
IRT model, and (e) it may yield equivalent ability estimates for item sets
differing in difficulty and/or discrimination, though not without measurement
error (Green, Yen, & Burket, 1989).

Other appeals of IRT in practice are:
(1) It provides better equating at the upper end of the score scale,

where important decisions are often made.
(2) It improves the flexibility in choosing among editions of a test,

given the editions are placed on the same scale.
(3) If re-equating is needed, which usually occurs when certain items

are added or dropped, it is easier to obtain the true score estimates with the
IRT methods.

(4) It enables pre-equating, which derives the relationship between the
test editions before they are administered operationally, given the pretest
data are available (Cook & Eignor, 1983).

(5) For test forms across years that differ somewhat in content and
length, the IRT equating may reduce the bias or scale drift in equating chains
of circular-equating paradigm, and the stability of the scales near the
extreme values may increase (Petersen, Cook, & Stocking, 1983; Hills,
Subhiyah, & Hirsch, 1988).
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Despite all the advantages listed above, Kolen and Brennan (1995)
pointed out that IRT models gained their flexibility by making strong
statistical assumptions and these assumptions were not likely to hold
precisely in real testing situations. As a result, robustness of IRT models
to the violations of model assumptions needs to be studied. Green, Yen, and
Burket (1989) noted that it was not safe to say that IRT method would yield
equivalent ability estimates if the items in different forms were different in
content coverage. Therefore, test content should be carefully considered in
IRT equating. Sometimes, the results of IRT equating agree with linear
equating to a surprising degree. One possible explanation is that the test
forms being equated are constructed to be similar considerably (Berk, 1982).

Effects of Examinee-Group Differences
Ideally, equating results should be independent of sub-populations of

examinees of the same ability. Lawrence and Dorans (1990) suggested
population independence be investigated under circumstances that examinee
samples differed in ability.

Ability difference between examinee samples may have serious impacts on
equating results (Cook, Eignor, & Schmitt, 1988). Theoretically, the closer
the groups in ability, the more accurate the equating will be. However,
Marco, Petersen, and Stewart (1983) found that if anchor test mirrored the
content and difficulty level of the entire test, sample differences had
relatively small and unsystematic effects on the quality of equating results.

Effect of Characteristics of Anchor items
The characteristics of anchor items, particularly the content

representation and number of anchor items, may be influential on equating
results.
Length of Anchor

Although there is no absolute standard for setting the number of an
anchor items, a rule of thumb is to include at least 20 items or 20% of the
total number of items in a test, whichever is larger (Angoff, 1984). Several
studies have shown that as few as five or six carefully selected anchor items
would perform satisfactorily for the IRT equating, when the item parameters of
alternate tests were estimated by IRT concurrent method (Raju, Edwards, &
Osberg, 1983; Wingersky & Lord, 1984; Raju, Bode, Larsen, & Steinhaus, 1988;
Hills, Subhiyah, & Hirsch, 1988). Nevertheless, using IRT concurrent method,
Hills, Subhiyah, and Hirsch (1988) found that randomly selected anchor items
was not sufficient for producing satisfactory equating result, at least ten
items was needed.
Content Representation

Whether anchor items are representative subset of the entire test, in
terms of content and statistical properties, is especially important when
examinee groups vary in ability (Cook & Petersen, 1987). Budescu (1985)
pointed out that the magnitude of relationship between anchor test and unique
components of each test form was the single most important determinant for the
efficiency of equating. The relationship, however, depended on the
reliability of the total test and the relative length of its two components.
When non-random groups in an anchor design performed differentially, Budescu
suggested that it was important to select anchor items that cover various
content areas of a particular test to reflect the content mix of the entire
test

Eguating Test Scores from Skewed Distributions
Often, equating is conducted for large scale achievement tests that have

approximately symmetrical and bell-shaped score distributions. From time to
time it is necessary, though, to equate tests that have skewed score
distributions such as minimum-competency tests and licensure exams that have
high passing standards. For licensure or certification programs, test forms
are often equated with special interest on a particular cut-off score, or a
range of scores, to inform decision making. To maximize the precision of the
decision, it is reasonable to pay more attention to improve equating in the
cutting score region, even at the expense of poorer equating at other scores
(Brennan & Kolen, 1987).



Equating Accuracy

12

Hills, Subhiyah, and Hirsch (1988) equated a minimum-competency test to
an early version administered two years before and found that the results of
the five equating methods used were generally similar to one another. They
thus concluded that IRT equating methods could be applied to equating minimum-
competency tests with extremely skewed distributions.

Assessing Equating Adeauacv
Equating outcome can be evaluated in terms of its accuracy, sample

invariance, and scale stability. This section of review focus on the
estimation of equating accuracy, which is more relevant to the study design.
Criterion for Evaluating Equating Accuracy

It was found that IRT-based methods were better at equating both
parallel and non-parallel tests (Kolen, 1981), effective for both inter-level
and inter-form equating (Green, Yen, & Burket, 1989), and would yield more
accurate equating outcomes than conventional equating (Petersen, Cook, &
Stocking, 1983; Hills, Subhiyah, & Hirsch, 1988). These findings, however,
may be tentative if the criterion used to evaluate the equating accuracy of
IRT methods was biased. Therefore, in evaluating the effectiveness of various
equating, it is important to seek a relatively unbiased criterion.

Often, equipercentile equating is used as evaluation criterion because
it usually yields satisfactory results. In a comparative study, Livingston,
Dorans, and Wright (1990) regarded equipercentile relationship as true
equating relationship because true scores could be precisely estimated. Yen
(1985) also suggested the use of equipercentile equating because it was as
accurate as IRT equating.
Indices of Equating Accuracy

One common index used to represent equating accuracy is root-mean-
squared deviation (RMSD), also known as root-mean-squared error of equating
(RMSE). Suppose Form-B of a test is equated to Form-A, then

RMSD = {[±0:4- Xy)21/ fly}
1/2

Y=I

where (a) ny is the number of examinees with raw score y on Form-B, (b) iy

is the corresponding exact scaled score on Form-A determined by criterion
equating, (c) xy is the corresponding exact scaled score on Form-A

determined by the equating to be evaluated against the criterion, and (d) the
summation is over the raw-score levels on Form-B (Klein & Jarjoura, 1985;
Livingston, Dorans, & Wright 1990).

Mean equating error, the bias that contributes to RMSD, can also be used

as an index. It is estimated by: BIAS=X-X , where X is the mean of the
criterion scores and X is the mean of the equivalents (Klein & Jarjoura,
1985). In addition, Marco, Petersen, and Stewart (1983) investigated the
adequacy of curvilinear score equating by using squared bias and standardized
weighted mean square difference, which weighted more on values that occurred
more often, as indices of accuracy.

Dimensionality Issues
The robustness of IRT model to the violation of its assumptions is a

major concern in IRT equating, because achievement tests usually cover
multiple content topics, which may be influential on IRT model fit.
Definition of Unidimensionality

Test scores are most meaningful when all the items depend on a single
trait. If the IRT assumption of unidimensionality holds, local independence
should be observed. Statistically, local independence requires that, for
fixed ability level 0, the item characteristic functions for any pair of items
i and j should be independent (Lord, 1982b). If the probability for the given
responses to the given items i and j are not independent at fixed 0, the
responses may depend on some trait other than the 8. Hence, the IRT
assumption of unidimensionality is violated.
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Robustness of Unidimensionality Assumption
It has been shown that the violation of unidimensionality might have an

impact on equating, but the effect might not be substantial (Dorans &
Kingston, 1985). It depended on how the violation of the assumption is
formulated. It was found that dimensionality violation would cause asymmetry
of equating and influence the estimated magnitude of item discrimination
parameter. However, similar equating outcomes were also found in equating
tests differing in their dimensionality. It suggested that IRT equating might
be robust against the violation of unidimensionality assumption. Or, it could
be hypothesized that there was an overall ability, which could be
conceptualized as a weighted composite of separate component abilities (Dorans
& Kingston, 1985; Reckase, Ackerman, & Carlson, 1988; Yen, 1984).

Reckase, Ackerman, and Carlson (1988) had demonstrated that items
measuring the same weighted composite abilities would meet the
unidimensionality assumption for most of the IRT models. Dorans (1990) also
argued that, although tests ought to measure the same construct and have the
.same content mix, they did not have to be composed of unidimensional items.
If a test involved independent traits that influenced only a few items, Yen
(1984) suggested that these traits might be ignored when the unidimensional
trait was defined.

Limitations of Equating
Equating cannot solve problems originated in rough or improper test

construction. It is mainly developed to improve on a test fairly constructed
but fails to yield parallel forms. All conventional equating and IRT equating
are primarily designed for test forms that have minor differences in their
difficulties. Cook and Eignor (1991) indicated that no equating method could
satisfactorily equate tests that were markedly different in difficulty,
reliability or test content. As a result, there is a concern about the
feasibility of vertical equating, which transforms scores across levels of
achievement onto a single scale.

Due to floor and ceiling effects, tests that differ in difficulty are
not likely to be equally reliable for all sub-groups of examinees (Skaggs &
Lissitz, 1986). But, equal reliability is usually assumed in test equating
such as linear equating and equipercentile equating. Thus it was argued that
observed scores on tests differing in their difficulties cannot be equated.
In practice, nevertheless, equating is conducted in its loose sense for a
pragmatic purpose-- to approximate an ideal equivalency.

Description of Data
The particular test data used in this study has a rich content mixture

(items were from 23 content sub-areas), which enables this study to
investigate a variety of equating issues such as the characteristics of anchor
items. Specifically, scores on the two forms, Book-A and Book-B, of a 1993
in-training examination taken by the candidates of a medical specialty were
analyzed. The candidates took the test, while participating in various in-
training programs located at different sites (usually in hospitals), to
prepare for the board certification examination. No absolute score was used
to determine pass or fail. The passing standard was 75% of the total test
items being correctly answered.

To become board-certified, the candidates were strongly motivated to
participate in the in-training programs for the preparation of the
certification exams. Since the in-training test provided candidates valuable
opportunities to get familiar with the formal certification exams, it was
assumed that the candidates had taken the test as serious as when the formal
exams were taken.

Test Content and Format
The test forms were comprised of five-alternative multiple-choice items,

and the content of all the items were emergency-medicine-related. The item
responses were all scored as right or wrong (coded as 1 or 0). Book-A had 203
items, of which 58 items were unique to Book-A. There were 52 unique items in
Book-B, and the total number of items was 197. There were totally 145 anchor
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items, and the anchors were identically embedded in both forms in terms of
wording and location.

Examinee Groups
A total of 2,242 candidates took the in-training test. After screening

the data, a case that had apparently guessed throughout the entire test was
deleted from the analysis to secure the validity of scoring. Among the 2,241
subjects, 1,092 took Book-A and the rest of 1,149 took Book-B.

The examinee group taking Book-B scored higher in average on the anchor
items, therefore it was likely that this group of examinees had higher
ability. Nonetheless Lord (1981) mentioned, the difference in ability level
would not influence equating result, given anchor-test design was employed.
In addition, the group taking Book-B had a lower mean score on the unreduced
full-length test. This implied that the unique items in Book-B had higher
difficulty in average.

The test forms generally met the equating requirements that were
mentioned earlier in the review of equating guidelines. Specifically, the
test was reasonably long and all the items were from one single item pool.
The anchor items constituted the major part of the total test. Some of the
items were administered in the previous year under the same standardized
testing situations. The size of the examinee groups, over 2,200 subjects,
were reasonably large. In addition, the scoring key was clear and the test
results appeared to be stable, given the preliminary analyses based on the
classical test equating.

Research Design
Using four different item sampling schemes, pairs of test forms were

assembled in this study with items sampled from the same big item pool. The
various schemes were devised to manipulate the content mix of the tests, or
the content representation of anchor items embedded in the test forms. The
pairs of test forms were then equated, using anchor-item equating design with
non-equivalent examinee groups, by Tucker linear method and two IRT methods.
The equating results yielded by the different methods were compared against an
appropriate criteria for evaluating equating accuracy that had several nice
appeals.

Overall, content representation of anchor items and equating method are
the two variables delineating the entire study. Other than the summary
presented in Tables 1 and 2, basic research designs of this study are further
elaborated in the following paragraphs.

Internal Anchor-Item Equating Design
The two examinee groups taking alternate test forms were not formed by

random selection or assignment. Therefore, equating was made possible by the
common items embedded in the alternate test forms. For the original test
forms, the content of the anchor items was made representative to the entire
test, and the anchor items were embedded in alternate test forms with same
wording and at the same positions.

Manipulation of Content Representation of Anchor Items
All the items in the two original test forms are from a single big

content domain. However, the content domain can be divided into 23 sub-
content areas. Pooling together the items from the two original test forms,
four subsets of items were drawn to form shorter test forms that had similar
number of anchor items but the anchor items differed in their content
representation. Thus the effect of content representativeness of anchor items
on test equating could be studied. In general, the test lengths of all the
shorter test forms (about 60 items) reflected the common test length seen in
testing practice, and the various item sampling schemes used in this study
were also used frequently in test construction.
Assumptions of Item Sampling Schemes

Various assumptions about the content of the test, used in this study,
were made by the four item sampling schemes. They were briefly summarized in
this section and details of the item sampling schemes and the sampling results
were described in Appendix A.
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The simple random sampling disregarded the existence of the 23 sub-
content areas and randomly drew items from the big item pool. The equal-
weight domain random sampling (random sampling stratified on sub-content
areas) assumed that each of the 23 sub-content areas represented a significant
part of the medical content domain, and these sub-content areas were equally
important. The proportional domain random sampling assumed that the size of a
sub-content area reflected its significance, therefore, it drew from each of
the 23 sub-content areas a number of items proportional to the size of the
area. And, the purposeful sampling included only the items from the largest
three content sub-areas, assuming that the number of items in a sub-content
area reflected the importance of the content.

If a test form involved a smaller number of sub-content areas, we would
have more confidence in the assumption of unidimensionality made about the
content of the test form.
Controlling for Anchor-length Effect

From a previous study using the same data, it was found that equating
accuracy depended on the number of anchor items in the test forms being
equated. Specifically, equating results from test forms that had longer
anchor lengths tended to be more accurate (Yang & Houang, 1996). Therefore,
in this study, the numbers of anchor items in various shorter test forms were
fixed at 30 to avoid the confounding effect resulted from different anchor
lengths. A number of 30 anchor items had been found to yield sufficiently
accurate equating results.

Due to limited number of items available for item sampling, it was
difficult to compose tests forms that all had the same number of anchor items.
Nevertheless, this study ensured that at least 30 anchor items, a sufficient
number of anchor items, were embedded in all of the shorter test forms.

Eguating Methods
In addition to Tucker linear equating, two IRT-based methods were also

used to equate alternate test forms for the study of method effect on equating
accuracy. Both IRT-based equating are based on 3PL IRT model to account for
guessing, because the chance for examinees to guess on some items could not be
ruled out. One of the IRT-based method used is the two-stage method, which
linearly transforms estimated IRT parameters on one test form to the parameter
scales of another form. The second IRT-based method used is the fixed-b
method, which sequentially calibrates test items of alternate forms. The two
methods differed in their parameter-estimation procedures and, hence, equating
procedures.

Criterion for Evaluating Equating Accuracy
In this study, items were sampled from one big item pool to form shorter

test forms. As a result, examinee performances on the complete set of 145
common items in the big item pool could be regarded as the "anchor universe",
relative to the anchor items embedded in the shorter test forms. "Pseudo true
scores", the estimated true scores based on such "anchor universe", could be
computed and thus used as eligible criteria for evaluating equating accuracy.
However, such criterion was only appropriate when the examinee population and
the testing occasion were considered fixed.

The "pseudo true score" was estimated by using the total raw score on
the 145 anchor items. Although such raw-score-based criterion were
susceptible to some drawbacks, including being person-dependent and item-
dependent, it would not be biased in overestimating the accuracy of IRT
equating. Intuitively, the lower bound of equating accuracy could be
estimated for IRT equating. Therefore, the raw-score-based "pseudo true
score" was chosen to represent a conservative criterion.

The accuracy of equating results were expressed by Pearson product
moment correlation coefficient (r). A bigger positive Pearson r would
indicate a more accurate equating result. Specifically, true scores based on
various equating results from the shorter test forms were estimated and then
correlated to "pseudo true scores" to obtain the indices of equating accuracy,
the Pearson rs.
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Research Tools
A variety of IRT calibration programs, such as ASCAL, BILOG, and LOGIST,

were available for item and person estimation. The program chosen for the
analyses of this study was the PC version BILOG. One advantage of using BILOG
is that BILOG yields marginal maximum likelihood (MML) estimates and the
number of parameters estimated does not increase with the increasing number of
examinees. When the number of examinees increases, BILOG was found to yield
more consistent results than LOGIST (Mislevy & Stocking, 1989; Baker, 1990).
Yen (1987) also found that BILOG always yielded more precise estimates of
individual item parameters. For shorter test with ten items, BILOG excelled
LOGIST in estimating item and test characteristic functions; whereas for
longer tests with 20 to 40 items, the two programs yielded similar estimates.
Mislevy and Stocking (1989) also found that BILOG would yield more reasonable
results when the examinee samples are smaller.

In addition to BILOG, SAS for Unix and Excel spreadsheet were also used
in this study to facilitate Tucker linear equating and all other sorts of data
management and analyses.

Research Limitations
The scope and depth of this study was limited by personal interest and

ability. Environmental conditions, such as the cost, the availability, and
the capacity of computer packages for IRT calibration and equipercentile
equating, also set limits for this study. Despite the fact that the rich
context of the data analyzed in this study helped enrich the research
questions and the study design, the data analyzed still set limits for this
study in the sense that it was secondary data so any manipulations before and
during data collection were not accessible. For instance, equating using
anchor-item design was the only option for this study because the test forms
were written with embedded anchor items and given to non-equivalent groups.

Results and Discussion
Results of classical item analyses, correlation analyses on anchor items

and none-anchor items, inspection on examinee group differences, IRT parameter
estimations, equating outcomes yielded by various equating methods, as well as
the evaluation of equating accuracy are all presented and discussed in this
section. Issues concerning the use of the index of equating accuracy, the
adequacy of 3PL IRT model, as well as the validity and reliability of anchor
items are also considered.

Classical Item Analyses
Analyses on item difficulties showed that in general average item

difficulties, ranging from 0.688 to 0.759, were quite similar for the four
pairs of test forms and were considered moderate. The standard deviations of
item difficulties within various test forms were also very similar, ranging
from 0.145 to 0.153. These small standard deviations implied that items
within the same test forms generally did not differ much in their
difficulties. The distribution plots shown in Figure 1 further indicated that
item difficulties were evenly spread within test forms for all pairs of test
forms. Distributions of item-total correlation were presented in Figure 2.
It was found that item scores generally correlated moderately to total test
scores for all the test forms.

In summary, classical item analyses suggested that (a) the alternate
test forms created in this study did not differ much in item difficulty and
item-total correlation, thus were good candidates for equating, and (b) the
four pairs of test forms looked quite similar to one another in terms of
average difficulty, which provided a fair basis for the study of the effect of
anchor characteristics on equating accuracy.

Representation of Anchor Items
Results of correlation analyses on anchor items and none-anchor items

(see Appendix B) provided a closer look at the composition of various test



Simple Random
Sampling

Equal-weight
Domain Random

Sampling

Proportional-
weight Domain

Random
Sampling

Purposeful
Sampling

Alternate Test Forms
Book-A

0000.:01 IIIIIi,,11

0.9

0.3

0.2

0.1

VIII 1ill 11

111

Book-B

0.4

0.3

01

0

0.1

153

Figure 1. Distributions of item difficulty (p) for pairs of shorter test forms

2
001.240 3/21/97



Simple Random
Sampling

Equal-weight
Domain Random

Sampling

Proportional-
weight Domain

Random
Sampling

Purposeful
Sampling

Alternate Test Forms

Book-A

0.6

0.5

0.4

03

:21 .1111011111110100100000011i

mean=0.199 stdevH-3.116

p 0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

mean=0 208 tdev=0 114

P

:21 11111111111111il1100000HDHilli

mean=0.203 stdev=0.103

p 0.6

0.5

0.4

0.3

01

0.1

-0.1
mean=0.282 stdev=0.126

Book-B

p 0.6

0.5

0.4

0.3

01 -

0.1 -

-

-

-

-
.,....e

-4-

mean=0.236 tdev=0 113

0.5

0.45

0.4

0.35

03

0.25

0.2

0.15

0.1

0.05

-0.05 mean=0.218 tdev=0.113

P 0.5

.1111111111110100111H00011111

mean=0.225 stdev=0.126

p 0.7

0.6

0.5

0.4

03

0.2

0.1

mean=0.293 dev=0 117

Figure 2. Distributions of item-total correlation for pairs of shorter test forms

41120 3/21/97



Equating Accuracy

17

forms. Overall, for each of the shorter test forms and the original longer
test forms, anchor items and none-anchor items correlated to each other
significantly to a moderate degree. The correlation coefficients ranged from
.44 to .54 across various shorter test forms. Both anchor and none-anchor
items of a test also correlated significantly with the entire test to a
considerable degree. The correlation between anchor items and the entire test
ranged from .86 to .97 across various test forms. As a result, it seemed
reasonable to use the anchor items to equate the entire alternate forms.

A shrinking trend was found in the correlation between anchor items and
entire test across various test forms. In summary, (a) for test form Book-A,
the magnitude of correlation coefficient decreased from .97 of purposeful
sampling, to .94 of equal-weight domain random sampling, to .92 of
proportional-weight domain random sampling, and to .86 of simple random
sampling; and (b) for Book-B, the pattern of shrinkage remained, and the
coefficient dropped from .97 to .94 to .93 to .86 accordingly. The shrinkage
suggested that content representation of anchor items was likely to very with
item sampling schemes. The purposeful sampling seemed to have yielded anchor
items that were most representative of the entire test. It made sense because
all of the items sampled by this scheme concentrated on merely three sub-
content areas and were likely to be more similar in content. The simple
random sampling scheme resulted in anchor items that seemed least
representative. The finding could be attributed to the fact that the randomly
sampled items scattered all over 23 sub-content areas such that the overall
content was more heterogeneous. The similar results of equal-weight and
proportional-weight domain random sampling might reflect the indifference
between sampling items evenly from all sub-content areas and having more
emphasis on larger sub-content areas.

It should be noted, though , the magnitude of the correlation between
anchor items and the entire test was inflated by auto-correlation because the
internal anchor was a subset of the test. The magnitude of auto-correlation
depended greatly on the number of anchor items embedded in a test.
Consequently, whether anchor items were representative of the entire test
should not be solely determined by looking at the correlation coefficient. In
this study, however, the effect of auto-correlation were expected to be about
the same on various test forms because their anchor lengths were fixed to be
similar.

Considerations of Group Differences
Overall, the average raw scores of examinee groups taking different test

forms did not differ substantially. Upon a closer inspection on the raw
scores, however, it was found that examinees taking one test form (Book-B)
scored slightly higher than examinees taking the other form (Book-A) on both
anchor items and unique items across all pairs of shorter test forms.

To further inspect examinee group differences, the average item
difficulties broken down by test form and type of items were computed for all
of the test forms. The results of the average item difficulties were
summarized in Table 3. Slightly larger percentages were found consistently
over various test forms for examinees taking Book-B on anchor items,
indicating that the examinees might have higher ability than examinees taking
Book-A. The group differences were probably due to the non-random selection
or assignment of examinees in testing.

As discussed previously in literature review, examinee-group disparity
may be a threat to the equating accuracy of Tucker linear method, therefore
Levine equally reliable method is sometimes recommended instead (Kolen &
Brennan, 1987). In this study, however, Tucker method was still used because
(a) the differences found between examinee groups were small and equating
results of Tucker method were expected not to be affected, (b) the advantage
of Levine method over Tucker method is still not clearly known (Kolen &
Brennan, 1987), (c) Levine method generally is more appropriate for more
similar test forms, but the similarity between the test forms used in this
study was not clearly confirmed, and (d) it was found that equating results
yielded by the two methods for the original test forms were almost identical,
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thus it was safe to conclude that the two methods would make no difference for
the test analyzed in this study.

Estimation of IRT Parameters
Results of IRT item and person parameter estimations were summarized in

Table 4 for the four pairs of test forms. Roughly, the patterns of estimated
parameters showed that test forms created by different item sampling schemes
differed less in their average item discrimination but more in their item
difficulties. The mean item difficulties on anchor items also differed across
test forms, and the mean item difficulties for the test forms created by
purposeful sampling of item looked especially different from the rest. The
differences in the estimated item difficulties seemed suggesting some effect
of item sampling on test and anchor characteristics. Comparing the mean item
difficulties on anchor items for the two alternate forms (Book-A and Book-B),
it should be noted that purposeful sampling seemed to have created test forms
that were more different than the forms created by the other item sampling
schemes.

Eauating Ability Estimates
Equated IRT ability estimates yielded by two-stage and fixed-b methods

were correlated to compare the equating results of the two methods. Pearson
correlation coefficients were computed and the results for various test forms
are as follows: (a) r=0.99985 for the test form composed by simple random
sampling of items, (b) r=0.99961 for equal-weight domain random sample, (c)

r=0.99961 for proportional-weight domain random sample, and (d) r=0.99993 for
purposeful sample. These nearly perfect and significant correlation strongly
suggested that the two IRT equating methods were almost identical in
determining the standings of individual examinees in a group. It could be
argued that there was no IRT method effect on ability estimation in this
study.

Estimation of True Scores
To obtain true score estimates, the following formula was used (Lord,

1980):

Estimated true score ( p1(0) = Etc i+ (1 01[1+ Exp-1.7ai(0-11)]}
1 =1 1=1

where 0 is examinee ability and n is the number of items.
As expected, for all test forms, the correlation between estimated true

scores based on the two IRT equating was almost perfect and significant. It
was consistent with the findings on the IRT estimated ability estimates. Thus
it was concluded that the two IRT equating methods were not different in
equating the tests in this study and would place. individual examinees of a
group in almost the same order.

Results of Tucker Linear Equating
For each pair of alternate test forms, Tucker linear method was applied to
find an equating equation for transforming scores on Book-B to a set of new
scores comparable to scores on Book-A. The Tucker equating equations derived
for the four shorter test were presented in Table 5, along with a
summarization of important statistics used to arrive at the equations. Using
the Tucker equations, equivalent scores were established for test forms Book-A
and Book-B.

Evaluation of Equating Accuracy
The total raw scores of examinees on all the 145 common items in the

original item pool were computed and treated as the "pseudo true scores". The
"pseudo true scores" were then correlate with the estimated IRT true scores
yielded by the two IRT equating, as well as the scaled total scores obtained
by Tucker linear method. Pearson correlation coefficients were computed and
used as indices of equating accuracy. Specifically, a positive and bigger
coefficient would indicate a more accurate equating result. The collection of
correlation coefficients between the "pseudo true scores" and the estimated
true score yielded by various equating method for various test forms were
presented in the big correlation matrix in Table 6 to illustrate the accuracy



Table 4
Results of IRT Parameter Estimation

Composition of test
forms

Alternate Estimated
forms parameter

Simple
random

sampling

Equal-weight
domain
random

sampling

Proportional-
weight domain

random
sampling

Purposeful
sampling

Book-A

mean
CI

s.d.

0.340

0.173

0.342

0.168

0.340

0.127

0.444

0.192

mean
Et

s.d.

-0.884

2.239

-1.445

2.231

-1.090

2.043

-0.653

1.848

c mean

s.d.

0.252

0.046

0.260

0.033

0.256

0.029

0.247

0.052

.. _
b anchor

-1.340 -1.750 -1.090 -0.750

mean
o

s.d.

0.003

0.851

0.006

0.854

0.005

0.839

0.007

0.897

Book-B

Using
IRT two-

stage
method

mean
a

s.d.

0.377

0.165

0.355

0.162

0.410

0.162

0.444

0.041

meani s.d.

-1.008

1.891

-1.561

2.240

-0.380

2.361

-0.904

1.705

mean

C s.d.

0.241

0.034

0.270

0.030

0.328

0.052

0.231

0.041

13- anchor -1.45 -1.88 -0.840 -0.180

mean
o

s.d.

0.003

0.868

0.004

0.857

0.012

0.858

0.005

0.886

Using
IRT

fixed-b
method

mean
Q

s.d.

0.400

0.164

0.377

0.165

0.433

0.166

0.462

0.194

mean
i; s.d.

-0.591

1.951

-1.200

2.374

0.052

2.301

-0.650

1.774

mean

s.d.

0.311

0.053

0.347

0.048

0.384

0.056

0.277

0.049

mean
o s.d.

0.059

0.880

0.011

0.867

0.142

0.869

0.061

0.888

Note: a = item discrimination parameter
b = item difficulty parameter
c = guessing parameter

= person ability parameter

=mean anchor item difficulty
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of various equating.
Comparisons Among Equating Methods

Overall, the indices of accuracy (Pearson correlation coefficients)
ranged from .832 to .894 across various test forms. It seemed that the
equating results yielded by the three equating methods were all accurate to a
moderate degree, and examinees were generally ordered in a consistent way, no
matter which method was used.

Despite the fact that the indices of accuracy in Table 6 all looked
similar, IRT equating appeared to have yielded more accurate results than
Tucker linear method always. The only exception occurred when the test forms
composed by proportional-weight domain random sampling were equated, where
Tucker method (r=.860) seemed to do better than IRT two-stage method (r=.845).
The results of the two IRT methods correlated strongly and the rs ranged from
.976 to .999 (see the bolded numbers in Table 6), showing that the IRT methods
yielded very similar results. The results of Tucker method, however,
correlated less strongly to the IRT results, with rs ranging from .944 to .973
(see the underscored numbers in Table 6).
Comparisons Among Test Forms

Comparing the equating results on various test forms, it was found that
both Tucker and IRT methods worked best for the forms composed by purposeful
item sampling scheme, where the index of accuracy was .895 in average. The
methods seemed to yield the least satisfactory results for the forms based on
simple random sampling of items, where the mean accuracy was .847. In
addition, the average accuracy for the test forms based on proportional-weight
and equal-weight random sampling were .858 and .869 respectively, indicating a
similarity in the item sampling effects of the two schemes.
Effect of Content Representation of Anchor Items

As discussed earlier, purposeful sampling yielded the most
representative anchor items and random sampling resulted in anchor items that
were least representative of the entire test. Combined the findings with the
above outcomes, it seemed reasonable to conclude that equating accuracy might
depend on the content mix or the content representativeness of anchor items.
That is, Tucker linear method and the two IRT methods are more likely to yield
more accurate results when anchor items are more similar to the entire test,
or the content coverage of a test concentrates on fewer topics. In short, the
characteristics of anchor items may have substantial impacts on the accuracy
of test equating, regardless of the equating method used. As a result, to
improve equating accuracy, it is important to include anchor items that can
fully reflect overall content coverage of the entire test.
Controlling Artifact due to Auto-correlation

For the index of accuracy, there was a concern about auto-correlation
caused by the fact that the "pseudo true score" was computed based on the
complete set of 145 anchor items and the anchor items in shorter test forms
were part of the complete anchor set. Due to the overlapping of items,
correlation coefficients that showed the relationship between true scores and
estimated true scores were inflated. To unmask the relationship to better
estimate equating accuracy, "pseudo true scores" were correlated with the
estimated IRT true scores that involved none-anchor items only. The results
of correlation analyses were summarized in Appendix C. The same strategy for
controlling auto-correlation, however, was not applied to Tucker linear
equating. Because Tucker method is based on observed test score as a whole,
unlike IRT methods that are more flexible in calibrating revised tests, it is
not feasible to obtain scaled scores on non-anchor items only.

After controlling the artifact due to auto-correlation, the patterns of
rs found among various methods and test forms in previous section remain
unchanged. The problem of auto-correlation seemed not to be serious,
therefore the conclusions about the accuracy of various equating methods on
different test forms and the effect of anchor characteristics were retained. .

Although the threat from auto-correlation may not be completely
eliminated by removing anchor items from the correlation analyses, by
controlling part of the artifact, the set of new indices of accuracy would

J1
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provide a better opportunity for understanding the effectiveness of equating
methods.
Concurrent Validity and Reliability of Anchor Items

The data was further exploited to investigate the validity and
reliability of anchor items, by correlating "pseudo true scores" with IRT
estimated true scores using anchor items only. The results were summarized in
Appendix D. Because the anchor items included in shorter test forms were part
of the set of 145 anchor items, from which "pseudo true score" was derived,
"pseudo true score" could also be regarded as a similar but more reliable
measure for the anchor items. From this perspective, "pseudo true score" was
used as a criterion measure to study the concurrent validity of anchor items,
and Pearson correlation coefficient was computed as a measure of validity.
Furthermore, by correlating an observed score (the estimated true score) with
its corresponding true score (the "pseudo true score"), the correlation
coefficient may be regarded as a reliability measures for the observed score.
From this point of view, the Pearson rs in Appendix D were also measures of
reliability.

In summary, strong relationship was found between "pseudo true score"
and anchor items for each of the shorter test. It provided some evidence of
validity and reliability for anchor items. In average, the
validity/reliability coefficient was .894 for the anchor items of the test
form composed by purposeful item sampling schemes, .875 and .858 for the
anchor items sampled by equal-weight and proportional-weight schemes, and .856
for the anchor items drawn by simple random sampling. Given the validity and
reliability evidence for anchor items used for equating, along with the
equating accuracy found, both IRT equating methods were concluded to be
satisfactory.
Limitation of the Criterion for Evaluating Eauatina Accuracy

As described earlier in the section of research design, "pseudo true
score", the raw-score-based criterion for evaluating equating accuracy, is
conceptually reasonable and will not over-estimate the accuracy of IRT
equating. The evidence of reliability and validity, as well as the
availability of data from all examinees, also support the use of the
criterion. Nonetheless, it is limited in the following senses: (a) it is only
appropriate when examinee group and testing occasion are considered fixed, as
noted earlier, (b) in essence, it remains a convenient close estimate of true
score that has measurement error, and (c) it is susceptible to problems such
as person-depend and item-dependent, due to its raw-score-based nature.

Alternatively, IRT estimated score can be computed using the 145 common
items and used as another type of "pseudo true score" or criterion for
evaluating equating accuracy. However, it is known that such IRT-based
criterion may be biased in over-estimating the accuracy of IRT equating, while
underestimating the accuracy of linear equating. Taking into account all the
facts, the raw-score-based criterion was used in this study because it would
provide a conservative estimate of equating accuracy for IRT equating.
Adequacy of 3PL IRT Model

The results of using the item and person parameter estimates of 3PL IRT
model for equating the minimum competence test analyzed in this study seemed
adequate. As explained earlier, the use of 3PL IRT model for parameter
estimation is a logical choice. In addition, the satisfactory equating
results yielded by the two IRT equating methods also help justify its use. It
can thus be concluded that it is appropriate to include guessing parameter
when tests or test forms with negatively skewed score distributions are
equated.

Suggestions
Equating accuracy can be better estimated if unbiased evaluation

criteria are identified and used. To compensate for the arbitrary and often
biased nature of common criteria used for evaluating equating accuracy,
multiple criteria can be devised to estimate equating accuracy so the
estimation outcomes can be compared to determine the relative effectiveness of

2
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these criteria. Therefore, in a subsequent study, several other criteria are
proposed to evaluate equating accuracy, including a different "pseudo true
score" based on estimated IRT true score using the 145 anchor items, and the
results of equipercentile equating, which are often considered satisfactory.

Assuming unidimensionality, in this study, 3PL IRT model seemed to have
yielded satisfactory estimates that were used to derive equivalent scores in
subsequent equating process. However, due to the fact that there are 23 sub-
content areas nested within the big content domain for the test, whether the
assumption of unidimensionality holds seems ambiguous.
If there are in fact more than one underlying traits for the test, then the
findings of this study suggest that the IRT model used is robust to the
violation of unidimensionality assumption. Nevertheless, in such case,
multidimensional IRT models may yield better results than the unidimensional
model. Therefore, dimensionality of the test should be carefully inspected or
defined via theoretical review, content analysis, or factor analysis so IRT
item and person parameters can be better estimated and used in equating.

For some other minimum competency test, if guessing effect is considered
not serious, then the use of Rasch model or 2PL IRT model may be better
alternatives to the 3PL IRT model. More investigations are needed for the
data-model fit of IRT parameter estimation, since the estimation results may
have substantial impacts on equating accuracy.

Beyond the current study, it will be intriguing to investigate functions
of various equating methods when test forms become longer or the number of
anchor items increases. Cross-year equating can also be conducted to examine
the effects of equating over time. If possible, validation study can also be
carried out to further determine equating accuracy by correlating equating
outcomes to the testing outcomes of some other examinations that need no
equating.
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Appendix A
Item Sampling Schemes for Shorter Test Forms

Simple Random Sampling
Assumption

Items from different sub-content areas do not differ substantially,
written for one single content domain (medicine-related) .

Method
Pool and mix items from all of the 23 sub-content areas to form a

randomly sample items from the pool using a random number table.
Results

One pair of shorter alternate test forms, each consisting 60 items.
items in each test form.

Equal-Weight Domain Random Sampling

since all of them are

big item pool. Then,

There are 30 anchor

Assumption
Each of the 23 sub-content areas represents an important part of the medical content

domain, and the 23 areas are of equal importance.
Method

For the first test form, sample three items from each of the 23 sub-content areas,
regardless of the size of these areas. To have anchor items spread evenly across various areas
and to account for the fact that there are more anchor items in the big item pool, whenever it is
possible, two anchor items and one none-anchor item are randomly drawn from each of the areas.
Use the anchor items sampled for the first test form as the anchor items of the second test form,
and randomly sample one none-anchor item from each of the content areas to make up the entire
second test form.
Result

A pair of alternate test forms, each consisting 69 items. For each test form, there are 49
anchor items and 20 none-anchor items.

Proportional-weight Domain Random Sampling
Assumption

The size of a sub-content area reflects its importance, that is, the more items a sub-
content area has, the more important the area is to the medical content domain.
Method

From each of the 23 sub-content areas, randomly sample a number of items that is
proportional to the size of the sub-content area. The sampling procedure is illustrated below in
more details:

Content
Area

Area size
(total # of items)

# of items
to be sampled

1 13 5.8 5.8 * 60 = 3.48 -4
2 23 10.2 10.2 * 60 = 6.12 a-6



3 3 1.3 1.3 * 60 = 0.78 al
4 14 6.2 6.2 * 60 = 3.72 4
5 5 2.2 2.2 * 60 = 1.32 al
6 19 8.4 8.4 * 60 = 5.04 -a5
7 5 2.2 2.2 * 60 = 1.32 al
8 3 1.3 1.3 * 60 = 0.78 al
9 6 2.7 2.7 * 60 = 1.62 a-2
10 9 4.0 4.0 * 60 = 2.40 -o-2
11 8 3.6 3.6 * 60 = 2.16 a-2
12 4 1.8 1.8 * 60 = 1.08 -al
13 13 5.8 5.8 * 60 = 3.48 4
14 7 3.1 3.1 * 60 = 1.86 -a2
15 5 2.2 2.2 * 60 = 1.32 al
16 15 6.7 6.7 * 60 = 4.02 4
17 13 5.8 5.8 * 60 = 3.48 4
18 25 11.1 11.1 * 60 = 6.66 a.7
19 8 3.6 3.6 * 60 = 2.16 a.2
20 5 2.2 2.2 * 60 = 1.32 al
21 4 1.8 1.8 * 60 = 1.08 al
22 9 4.0 4.0 * 60 = 2.40 -a-2
23 9 4.0 4.0 * 60 = 2.40 a2

Total 225 100.0 60

Result
A pair of alternate test forms, each consisting 60 items. In each form, there are 40 anchor

items.

Purposeful Sampling
Assumption

The more items a sub-content area has, the more important the area is, and the 23 sub-
content areas differ in their content to a somewhat degree. In other words, test form involving a
smaller number of content areas will be more homogeneous in content.
Method

Include all of the items in the largest three content areas, and disregard any items in the
rest of the areas.
Result

For one test form, 45 anchor items and 15 none-anchor items are included. And, for the
other test form, there are 45 anchor items and 12 none-anchor items.
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